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Background: Stemless anatomic humeral components are commonly used and are an accepted alternative to traditional stemmed im-
plants in patients with good bone quality. Presently, little literature exists on the design and implantation parameters that influence pri-
mary time-zero fixation of stemless reverse humeral implants. Accordingly, this finite element analysis study assessed the surgical
implantation variable of neck-shaft angle, and its effect on the primary time-zero fixation of reversed stemless humeral implants.
Methods: Eight computed tomography–derived humeral finite element models were used to examine a generic stemless humeral
implant at varying neck-shaft angles of 130�, 135�, 140�, 145�, and 150�. Four loading scenarios (30� shoulder abduction with neutral
forearm rotation, 30� shoulder abduction with forearm supination, a head-height lifting motion, and a single-handed steering motion)
were employed. Implantation inclinations were compared based on the maximum bone-implant interface distraction detected after
loading.
Results: The implant-bone distraction was greatest in the 130� neck-shaft angle implantation cases. All implant loading scenarios eli-
cited significantly lower micromotion magnitudes when neck-shaft angle was increased (P ¼ .0001). With every 5� increase in neck-
shaft angle, there was an average 17% reduction in bone-implant distraction.
Conclusions: The neck-shaft angle of implantation for a stemless reverse humeral component is a modifiable parameter that appears to
influence time-zero implant stability. Lower, more varus, neck-shaft angles increase bone-implant distractions with simulated activities
of daily living. It is therefore suggested that humeral head osteotomies at a higher neck-shaft angle may be beneficial to maximize stem-
less humeral component stability.
Level of evidence: Basic Science Study; Computer Modeling
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Reverse shoulder arthroplasty (RSA) implants have un-
dergone a variety of design modifications since first intro-
duced. Some modifications include press-fit stems,
modularity, adjustments in neck-shaft angle, and onlay/
inlay design features. One design feature, focused on
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Figure 1 A posterior-lateral view of the left humerus implanted
with a generic boundary-crossing implant, designed using
variable-driven parametric design software. The implant was
repetitively positioned into all 3D humeral models, developed
from patient CT scans, at each neck-shaft angle.
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decreasing stress shielding and simplifying future revisions,
has been the gradual shortening of the humeral stem.30

Although anatomic stemless shoulder arthroplasty im-
plants are steadily becoming more popular, the use of
stemless RSA implants is still limited, with very few pub-
lished works reporting on the clinical and biomechanical
performance of these novel implants.1 Shorter humeral
stem lengths have been shown to decrease stress shielding
in periprosthetic bone by better mimicking natural force-
transmission properties.27 Stemless designs also benefit
from the preservation of humeral bone stock, reduction of
risk of periprosthetic fractures, and simplification of sur-
gical technique.26 However, these designs of humeral
implant also pose several risks that emphasize the impor-
tance of primary fixation. Ultrashort implants or stemless
humeral implants are more vulnerable to poor initial fixa-
tion, instability, or loosening than their stemmed counter-
parts, because of the reduced bone-implant contact area and
lack of cortical bone contact.1,26

The primary method of achieving fixation in existing
stemless RSA implants is via osseointegration (viz. bony
ingrowth). In order for this bone-implant bonding to occur, the
two surfaces are required to maintain limited relative motion
(termed ‘‘micromotion’’11,22) during the healing phase
following surgery.8 The tolerable threshold of shear micro-
motion is often quoted as 150 mm.3,6,10,20,26 However, the
threshold of tolerable micromotion has also been reported as a
range of between 30 mm15,20 and 750 mm.12,20 Additionally, it
is rational to postulate that any lift-off or distraction micro-
motion may well impede bone contact and hence ingrowth.

One modifiable technical factor with stemless RSA hu-
meral implants is the resection inclination angle (or neck-
shaft angle) of the humeral head. RSA systems with varied
neck-shaft angles of between 127.5� and 155� are currently
used. It has been found that decreasing the neck-shaft angle
reduces the risk of scapular notching,14 and that modifying
the neck-shaft angle results in no significant differences in
scapular spine strain.16 In addition, it has previously been
found that decreasing the neck-shaft angle significantly
increases impingement-free range of motion,35 providing
incentive to decreasing the neck-shaft angle. However,
there remains a lack of knowledge regarding the effect of
the neck-shaft angle on primary implant fixation.

Computational methods have gained popularity in
orthopedics because of their ability to estimate
postoperative physical phenomena that are difficult to
measure in vivo.4-6,9,13,28,30,31 Numerous computational
studies evaluating implant designs are available4,27,28,30,34;
however, little to no literature has evaluated the effect of
neck-shaft angle on primary reverse humeral implant fixa-
tion in silico. The present investigation, therefore, deter-
mined the effect of stemless reverse humeral component
insertion neck-shaft angles on the primary time-zero sta-
bility of the implants. We hypothesized that increasing the
neck-shaft angle would result in better implant stability and
decreased micromotion at the implant-bone interface.
Methods

Computed tomography (CT) scans of 8 shoulders from male
cadaveric specimens (height: 177 � 4 cm, weight: 69 � 10 kg)
aged 70 � 21 years (mean � standard deviation) were collected
using a clinical CT scanner (slice thickness: 0.5 mm, pixel
spacing: 0.961 � 0.961 mm, exposure time: 750 ms, kVp: 120)
(GE 750HD Discovery Scanner; GE Healthcare, Chicago, IL,
USA). A cortical bone surrogate (SB3 model 450; GAMMEX,
Middleton, WI, USA) and distilled water were purposed as
phantoms to calibrate the apparent density in grams per cubic
centimeters from CT attenuation in Hounsfield units.19 Three-
dimensional models of the humerus (neck-shaft angle:
139� � 6�, retroversion: 22� � 13�) and cortical shell were created
in Mimics (Materialise, Leuven, Belgium) and exported as
nonuniform rational basis spline models instead of stereo-
lithography models because they can model complex surfaces on
the bony anatomy with greater accuracy. A Boolean subtraction
was performed to isolate the trabecular bone model from the
humeral model in a subsequent step.

A generic stemless reverse implant design was developed using
CadQuery, a 3D parametric design Python library (Fig. 1).25 This
generic implant design was chosen as a general representation of a
stemless boundary-crossing generic implant4,30; an amalgamation
of the Reeves et al30 Quad-Peg boundary crossing generic implant,
as well as the Stryker Tornier, Zimmer Biomet, and Lima
Corporate stemless designs currently available clinically.
Anatomic generator implant examples were used because of the
lack of stemless reversed implants available clinically. A single
size of generic implant (glenosphere diameter: 40 mm, collar
diameter: 36 mm, penetrating volume: 6.2 cm3) was found to be
an acceptable fit for all humeral models used.

The generic implant model was positioned by a board-certified
surgeon (G.S.A.) in SolidWorks CAD software (Dassault Syst�emes
Corp., Waltham, MA, USA) at a 135� neck-shaft angle. In order to



Figure 2 Four loading scenarios representing common activities of daily living that a patient might experience postoperatively (30�

shoulder abduction with neutral forearm rotation [30� ABD-N], 30� shoulder abduction with forearm supination [30� ABD-S], a head-
height lifting motion [HHL], and a single-handed steering motion [SHS]). Each load was applied to a point consistent with the center
of the glenosphere in the reversed total shoulder arthroplasty reconstruction. Encastre boundary conditions are depicted at the distal humeral
resection surface using striped boxes.

Figure 3 Posterior-lateral view of the left humerus, implanted with a generic stemless implant at 150� (A) and 130� (B), with a heatmap
of bone-implant distraction magnitude overlayed. A lateral resection view is also displayed in the bottom left corner of each subplot. For
illustration purposes, the micromotion heatmap resulting from a single-hand steering motion is shown.
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Figure 4 Heatmaps of the micromotions developed at the bone-implant interface (N ¼ 1). All plots shown above are visualized medial-
laterally at a view normal to the 135� neck-shaft angle (NSA) resection surface. Maximum micromotions were detected at the bone-implant
interface at a position opposite to the direction of loading, indicated by the blue cross markings. Areas without colored nodes did not move
relative to bone throughout the analysis.
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maintain inclination consistency between specimens, the 135� im-
plantation case was first positioned as a control, and a computational
matrix transformationwas used to vary the inclination angle (at 130�,
135�, 140�, 145�, and 150� neck-shaft angles). A constant center of
rotation, positioned at the most superior-lateral apex of the anatomic
humeral neck in each specimen, was identified in the 135� control
resection and used for neck-shaft angle variation. Each humeral
modelwas re-evaluated at every implantation condition. All implants
were fully positioned in the humeral trabecular bone, and no cortical
contact was detected.

Finite element models were developed in Abaqus CAE 2021
software (Dassault Syst�emes Corp.) using a previously validated
approach.27-29 All components were meshed with 1.2-mm quadratic
tetrahedral elements, according to mesh convergence. Cortical bone
was assigned a constant Young modulus of 20 GPa,18,23,28,30,32 and
trabecular bonewas assigned elasticmoduli that varied in accordance
to the Morgan et al23 density-elasticity relationship.19,21,28,30,32

Mimics CT software was utilized to apply all inhomogeneous ma-
terial properties to trabecular bone models (0.11 � 0.01 g/cm3,
Pearson skew: 1.87). The cortical and trabecular bone models were
both assigned a Poisson ratio of 0.3.6,28 The generic implant was
assigned an elastic modulus of 110 GPa, representing titanium,24,32

and a Poisson ratio of 0.3.6,28,30 Implant-bone contact was assumed
as frictional and modeled to represent the behavior of a titanium
plasma-sprayed surface on bone (m ¼ 0.6).26
We employed 4 different loading scenarios (30� shoulder
abduction with neutral forearm rotation, 30� shoulder abduction
with forearm supination, a head-height lifting motion, and a
single-handed steering motion) built from Orthoload patient-based
measurements28 to encompass a range of activities, particularly
those known to produce eccentric loading and, therefore, chal-
lenges to implant-bone fixation (Fig. 2). These aforementioned
activities were chosen as they represent a diverse array of loading
states that a patient may experience immediately postoperatively
while adhering to standard postoperative instruction. Loading data
were extracted and corrected for the individual body weight of
each subject.7,28,30 The joint force line of action was directed
through the center of rotation of the simulated reverse arthroplasty
joint, and the humeral models were assigned encastre boundary
conditions on a plane 50 mm distal to the neck-shaft angle center
of rotation (Fig. 2).
Analysis

In order to quantify the initial fixation of each implantation case,
the maximum normal bone-implant distraction (micromotion) was
assessed. A 1-way repeated measures analysis of variance
(ANOVA) and a supplementary 2-way repeated measures ANOVA
with Bonferroni correction were conducted for the dependent



Figure 5 Maximum micromotion (mean � 1 standard deviation) levels for the 4 simulated activities at 5 neck-shaft angles.
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variable of neck-shaft angle for each loading scenario. All sta-
tistical analyses were computed using SciPy 1.9.1,33 with the
threshold of significance set as P <. 05.
Results

Stemless humeral implants exhibit greater stability when
implanted at higher neck-shaft angles. At higher neck-shaft
angles, a larger portion of the implant maintained contact with
the cancellous epiphyseal and metaphyseal bone (Fig. 3, A)
when compared to lower, more vertical, neck-shaft angles
(Fig. 3, B). For all loading cases, the maximum micromotion
was detected on the periphery of the implant baseplate
opposite to the direction of loading, whereas a greater portion
of the implant maintained contact with bone at higher, more
horizontal, neck-shaft angles (Fig. 4). The repeated measures
ANOVA revealed that the maximum micromotion developed
at the implant-bone interface was significantly higher for the
130� neck-shaft angle implantation conditions (30� shoulder
abduction with neutral forearm rotation: P ¼ .0192, 30�

shoulder abduction with forearm supination: P < .0001,
single-handed steering motion: P¼ .0002, head-height lifting
motion: P ¼ .0038) (Fig. 5, Table I). During a supplementary
2-way repeated measures ANOVA, Bonferroni correction
with an adjusted alpha level of 0.025 (0.05/2) per test was used
to further investigate the significance of neck-shaft angle.
Results suggest that across all loading scenarios, the neck-
shaft angle significantly affected initial implant stability
(P < .0001).

With every 5� increase in neck-shaft angle, there was an
average 14% decrease in the micromotion (30� shoulder
abduction with neutral forearm rotation: 11.2%, 30�

shoulder abduction with forearm supination: 13.5%,



Ta
b
le

I
In
te
rf
ac
e
m
ic
ro
m
o
ti
o
n
p
ar
am

et
er
s
fo
r
va
ry
in
g
im
p
la
n
ta
ti
o
n
n
ec
k-
sh
af
t
an
g
le
s

M
ic
ro
m
o
ti
o
n
(m
m
)

1
3
0
�

1
3
5
�

1
4
0
�

1
4
5
�

1
5
0
�

M
ea
n
(S
D
)

R
an
g
e

M
ea
n
(S
D
)

R
an
g
e

M
ea
n
(S
D
)

R
an
g
e

M
ea
n
(S
D
)

R
an
g
e

M
ea
n
(S
D
)

R
an
g
e

3
0
�
sh
o
u
ld
er

ab
d
u
ct
io
n
w
it
h

n
eu
tr
al

fo
re
ar
m

ro
ta
ti
o
n

4
.1
9
(2
.7
7
)

2
.2
9
-1
0
.7
7

3
.4
0
(1
.9
9
)

2
.2
1
-8
.5
3

3
.0
5
(1
.4
3
)

2
.2
0
-6
.7
0

2
.8
3
(1
.0
7
)

1
.7
6
-5
.2
5

2
.5
9
(0
.8
0
)

1
.8
0
-4
.6
2

3
0
�
sh
o
u
ld
er

ab
d
u
ct
io
n
w
it
h

fo
re
ar
m

su
p
in
at
io
n

3
3
.7
1
(8
.0
1
)

2
4
.0
8
-4
8
.0
9

3
1
.0
6
(8
.3
6
)

2
1
.7
4
-4
7
.3
8

2
7
.6
6
(7
.8
6
)

1
9
.1
1
-4
2
.4
7

2
3
.3
2
(7
.1
5
)

1
6
.6
0
-3
6
.9
7

1
8
.8
0
(6
.5
0
)

1
2
.0
6
-3
0
.9
1

Si
n
g
le
-h
an
d
ed

st
ee
ri
n
g
m
o
ti
o
n

2
6
.6
6
(1
9
.9
4
)

6
.7
4
-7
0
.3
1

1
9
.7
9
(1
5
.1
6
)

7
.0
5
-5
6
.5
5

1
6
.2
3
(1
1
.7
0
)

7
.4
2
-4
5
.7
5

1
3
.8
1
(9
.1
2
)

7
.5
1
-3
6
.9
4

1
1
.6
8
(6
.9
2
)

7
.7
2
-2
9
.6
4

H
ea
d
-h
ei
g
h
t
li
ft
in
g

m
o
ti
o
n

1
7
.3
9
(1
5
.9
6
)

4
.2
8
-5
4
.2
8

1
4
.3
3
(1
4
.1
2
)

3
.5
3
-4
9
.0
8

1
2
.1
1
(1
1
.7
1
)

3
.9
5
-4
1
.5
6

1
1
.1
7
(9
.7
9
)

4
.5
6
-3
5
.0
2

9
.4
7
(7
.4
5
)

5
.2
4
-2
8
.6
9

SD
,
st
an
d
ar
d
d
ev
ia
ti
o
n
.

Ea
ch

n
ec
k-
sh
af
t
an
g
le

(1
3
0
� -
1
5
0
� )

w
as

ev
al
u
at
ed

at
lo
ad
s
re
p
re
se
n
ta
ti
ve

o
f
4
ac
ti
vi
ti
es

o
f
d
ai
ly

li
vi
n
g.

6 D.E. Cunningham et al.
single-handed steering motion: 18.5%, head-height lifting
motion: 14.0%) developed during loading.
Discussion

The principal objective of this work was to assess how hu-
meral resection inclination (or neck-shaft angle) may affect
the primary stability of stemless reverse humeral implants.
We specifically hypothesized that increasing neck-shaft
angle, thereby decreasing implant inclination, would elicit
a more favorable level of implant stability than is experi-
enced at lower neck-shaft angles. Our results identified that
variations in the neck-shaft angle substantially influence
time-zero stemless implant fixation and stability.

From the results of this investigation, we postulate that
increasing the neck-shaft angle and the potential improve-
ment for stemless implant fixation may in part be attributed
to the line of action of the joint loading vector relative to
the implant-bone interface. With a more horizontal line of
action (higher neck-shaft angle), the joint loading vector
passes closer to the center of the interface, reducing
eccentric loading. Hence, the implant experiences a greater
amount of compression into the proximal humeral bone and
less distraction or lift-off. With a more vertical neck-shaft
angle, the implant does also experience compression;
however, there is also a greater amount of eccentric
loading. These eccentric loads, with a lower neck-shaft
angle, result in substantially greater amount of distraction
of the implant anteriorly. Distraction, as a mechanism of
failure, would clinically present as lift-off of the implant
anteriorly or flipping out of the implant.

We also postulate that bone quality may be influential, as
altering the neck-shaft angle affects the native bone stock
present at the bone-implant interface. Reeves et al29 have
shown that the best-quality bone in the proximal humerus is
located peripherally in the metaphysis and in the humeral
head. As such, we postulate that a higher neck-shaft angle
resection preserves a wedge of higher-quality bone behind
at the medial calcar region29 (Fig. 6). Therefore, a stemless
humeral implant placed at a higher neck-shaft angle is
typically inset into better-quality bone in the medial calcar
area than it would be at a lower neck-shaft angle.

Alterations in neck-shaft angle do have other important
ramifications. Higher neck-shaft angles result in greater
humeral distalization, adduction impingement, possible
notching, reduced abduction impingement, and reduced
internal/external rotation.2,14 In contrast, lower neck-shaft
angles result in greater humeral offset, improved adduc-
tion motion and rotation, and a higher potential for
abduction impingement.2,17 All of the above factors should
be considered when selecting a particular neck-shaft angle.

There are limitations with the present work. A generic
stemless implant design was assessed instead of implants
currently available in the global market, which may lessen
the clinical significance of these findings. The use of a



Figure 6 A stemless implant placed at a 145� neck-shaft angle.
The resultant resection at 145� leaves a wedge of higher-quality
medial calcar bone behind (blue arrow) for improved implant
stability and fixation when compared with the 135� neck-shaft
angle resection.
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generic implant ensured that full control over implant
variables could be maintained and could therefore align
with the initial hypothesis. This provided unbiased insight
into how neck-shaft angle may affect primary stability of
stemless humeral implants. Future investigations should
continue to assess additional implant designs in order to
provide a more thorough evaluation on the load transfer
effects of varying neck-shaft angles.

Another possible limitation of thiswork is the small sample
size utilized. Future investigations should use a larger cohort
of patient CTs in order to better represent the global popula-
tion. However, the use of 8 specimens is higher than typically
employed for computational studies of this nature on implant-
bone stress analyses.Additionally, this evaluationwas focused
on time-zero (directly after implantation) implant behaviors.
This is noteworthy, as trabecular bone is mechanoresponsive,
and the differences in loading postoperatively may result in
changes to the osseointegration responses in bone during the
postoperative rehabilitation period. Specifically, in press-fit
implants, experimental analyses focused on the effect of
cyclical loading may provide valuable insight into the failure
mechanisms of stemless humeral implants.

Strengths of this work include the repeatedmeasures study
design, with each specimen reconstructed repeatedly with
varying neck-shaft angles. This produced a more robust sta-
tistical power. The loads applied were also based on in vivo
telemetered data. Although these data were collected for an
anatomic total shoulder arthroplasty implant, in vivo data for
RSA do not yet exist. The same general loading scenarios
adapted for RSA kinematics should not bemarkedly different.
Conclusion
The neck-shaft angle of implantation for a stemless
reverse humeral component is a modifiable parameter
that has a substantial effect on time-zero implant sta-
bility. Lower, more varus, neck-shaft angles increase
bone-implant distractions with simulated activities of
daily living. It is therefore suggested that in cases where
primary reverse stemless implant stability is to be
maximized for fixation, humeral head osteotomies at a
higher neck-shaft angle may be beneficial.
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